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Studies Directed Toward the Total Synthesis of Kabiramide C:
Asymmetric Synthesis of the C7-C19 Fragment
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Department of Chemistry, Metcalf Center for Science and Engineering,
590 Commonwealth Avenue, Boston University, Boston, Massachusetts 02215

Abstract: The synthesis of the C7-C19 tris-oxazole fragment 4 of kabiramide C via a BF,*OFE,
promoted condensation between dimethyl acetal 12 and (S)-silane 6 as the crucial synthetic step is
described. © 1998 Elsevier Science Ltd. All rights reserved.

Kabiramide C (1) was first isolated in 1986 by Fusetani and coworkers from the egg masses of
marine nudibranches (sea slugs).' It belongs to an emerging class of secondary metabolites including the
ides,” and mycalolides, which share similar molecular architecture and
exhibit a broad range of biological activities, including antileukemic, antifungai, and ichthyotoxic
properties.” Kabiramide C, which is an extremely potent antifungal agent' as well as a novel actin
depolymerizing agent, may serve as a new pharmacological tool for analyzing actin-mediated cell

functions, such as muscle contraction, cell motility, and cell division. Structurally, kabiramide C is
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constructed from a 28-membered lactone which incorporates a tris-oxazole motif and a N-methyl formyl
group bearing sidechain. Although the relative and absolute stereochemistry of 1 has not been
unambiguously assigned, structural similarities among these macrolides provide compelling
circumstantial evidence for a common stereochemical assignment consistent within this class. The
illustrated stercochemistry rests primarily on spectroscopic analysis® and a correlation with a related
marine natural product, scytophycin C,” whose stereostructure has been established by X-ray
rystallography. The unique molecular structure of kabiramide C, in conjunction with its activity profile,

has attracted considerable interest of certain members of the synthetic organic community.® In this paper,

in curmthacio nf a B rig v
we wish to report the asymmetric synthesis of the C7-C19 tris-oxazole fragment 4.
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The bond disconnections at the C6-C7 and C19-C20 and cleavage of the lactone linkage produced

U
three principal fragments inciuding the known C20-C35 polypropionate fragment 2% the C

aliphatic fragment 3, and the C7-C19 tris-oxazole fragment 4 (Scheme 1).
It was envisioned that the syn stereochemical relationship at the C8 and C9 in 4 could be

established using chiral allylsilane based bond construction methodology.® Since the formyl oxazoles are
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oxazoles in the asymmetric crotylation reactions.

Model Studies. Oxazole-aldehyde 5, which is easily accessible from the corresponding 4-
ethoxycarbonyl oxazole,* was chosen as the substrate to evaluate the sense and level of the asymmetric
induction by chiral silane ($)-6. Among the many Lewis acids examined, BF,*OEt, and TiCl, proved to
be the only Lewis acids that can promote the condensation between § and 6 in synthetically useful yields.
More interestingly, it was found that the sense of 1,2-asymmetric induction in the Lewis acid promoted
addition of (5)-6 to oxazole aldehydes can be turned over by proper choice of the Lewis acid, albeit, with
modest diastereoselection (Scheme 2). If the monodentate Lewis acid BF,*OEt, is employed, a syn bond

construction nredominates. presumably via an antinerinlaner transition state. Whereas the comnlimentary
construction pregomunates, presumably via an antiperiplaner transition state vhereas the compiimentary
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condensation presumably through simultaneous coordinaiion of the aldehyde carbonyl and the nitrogen
of the oxazole ring. The 1,3-relationship of the heteroatoms of the oxazole ideally prediposes the more
Lewis basic nitrogen with the aldehyde carbonyl to generate a 5-membered chelate with TiCl, (see
illustrated synclinal transition state), which is responsible for the turn over of the stereochemical course

of the crotylation.
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In an effort to increase the level of diastereoselectivity, we then turned our focus on the

crotylation with the oxocarbonium ion derived from dimethyl acetal 9. Gratifyingly, BF,*OEt, promoted

condensation between 9 and 6 proceeded smoothly with a useful level of diastereoselectivity (de 9-1
congensation petween 3 ar proceeded smoothly with a userul level of diastereoselectivity (de
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developed for this reaction were used in the synthesis of the C7-C19 fragment.
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crotylation using (5)-6 (2.5 equiv BF,*OEt,, CH,Cl,, 0 °C to rt) afforded the homoallyhc methyl ether
13 in 88% yield with a moderate degree of diastereoselection (syn/anti 6:1). Through a two step
process, (1) a catalytic dihydroxylation with OsO, (0.1 mol %), (2) an oxidative diol cleavage by
Pb(OAc), (1.2 equiv), the methyl ether 13 was converted to aldehyde 14 (78% for two steps), which
was converted to the dithiane under standard conditions [HS(CH,),SH, BF,*OEt,]."” providing 4'* in
nearly quantitative yield. Thus, the synthesis of the C7-C19 fragment 4 was achieved by an cfficient,
five-step sequence with 67% overall yield from 11.
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In summary, a concise synthesis of the C7-C19 wris-oxazole fragment of kabiramide C has been
developed. The following paper in this issue describes the synthesis of the C1-C6 fragment and its
union with the C7-C19 fragment.
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